($\$ 16.7$ General coordinate transformations -

- We used the geometry ot polar/cylindrical/spherical coord tronsformections to get the arephification factor for area/volvase

Polar:

$$
d x d y=r d r d \theta
$$

Cylindrical: $d x d y d z=\underset{A}{r} d r d \theta d z$ Spherical: dy dy $d z=\frac{\operatorname{sen}_{\mathrm{A}}^{2} \sin }{\mathrm{~A}} d \rho d d d \theta$ - How does it wonk ungeveral?

$$
x=g(u, v)
$$

$$
x=g(u, v, w)
$$

$y=h(\nu, \nu)_{\text {Whats } A \text { ? }}$
or $\quad \begin{aligned} & x=8(u, v, w) \\ & y=h(u, v, w)\end{aligned}$
$k=k(u, v, u)$

- Compare with the 1-dimensional(2) Substitution principle of Math alB

$$
\begin{gathered}
\left.I=\int_{a}^{b} f(x) d x=\int_{u_{a}}^{u_{b} \quad b=g\left(u_{b}\right)} f(g(u)) g^{\prime}(u) d x\right) x \\
x=g(u) u_{a} \sim \\
d x=g^{\prime}(u) d u
\end{gathered}
$$

Amplification factor for length

$$
A=g^{\prime}(a) \quad x=g(u)
$$

Picture:

$$
\begin{aligned}
& x=g^{\prime}(u)=\frac{d x}{d u} \\
& d x=g^{\prime}(u) d u \\
& A
\end{aligned}
$$

- Consider 2-dimensions

$$
\begin{aligned}
& I=\iint f(x, y) d x d y \\
& R_{x y} \quad \begin{array}{l}
x=g(u, v) \\
y=h(v, v)
\end{array}
\end{aligned}
$$

Theorem:

$$
\begin{aligned}
& \iint_{R} f(x, y) d x d y \\
& \left.=\iint f(g(v, v), h(u, v))\right)_{\substack{\text { Amplification } \\
\text { faction for Area }}} R_{a v} d u d v \\
& \left.R=\operatorname{det} \left\lvert\, \begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right.\right)=\operatorname{det}\left|\begin{array}{l}
-\nabla g- \\
-\nabla h-
\end{array}\right| \\
& =g_{u} h_{v}-g_{v} h_{u}
\end{aligned}
$$

Ex Check Polar Coordinates:

$$
\begin{gathered}
x=r \cos \theta=g(r, \theta) \quad u=r \\
y=r \sin \theta=h(r, \theta) \quad v=\theta \\
\nabla g=\left(\frac{\partial g}{\partial r}, \frac{\partial g}{\partial \theta}\right)=(\cos \theta,-r \sin \theta) \\
\nabla h=\left(\frac{\partial h}{\partial r}, \frac{\partial h}{\partial \theta}\right)=(\sin \theta, r \cos \theta) \\
A=\operatorname{det}^{2}\left|\begin{array}{c}
-\nabla g- \\
-\nabla h-
\end{array}\right|=D e t\left|\begin{array}{c}
\cos \theta-r \sin \theta \\
\sin \theta \\
r \cos \theta \\
g_{u}
\end{array}\right| \\
g_{u} \quad h_{v} \\
=(\cos \theta)(r \cos \theta)-(-r \sin \theta)(\sin \theta) \\
= \\
=r \cos ^{2} \theta+r \sin ^{2} \theta=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
=r
\end{gathered}
$$

Summary:

$$
\begin{aligned}
& \begin{array}{ll}
x=g(u, v) \\
y=h(u, v)
\end{array} \quad \operatorname{det}^{2}\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& x=g(u, v, w) \\
& y=h(u, v, w) \text { det } \left\lvert\, \begin{array}{l}
g_{u} g_{v} g_{w} \\
h_{u} h_{v} h_{w}
\end{array}\right. \\
& z=k(u, v, w) \quad k_{k u} k_{v} h_{w}
\end{aligned}
$$

- Notation Since the

Amplification factor is given. by a Jacobian Determinant, we usually denote it by J
Eg: $x=g(u, v)$ straight limes

$$
y=h(u, v)
$$

$$
J=\operatorname{det}\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right| \equiv\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right|
$$

ouse J instead of A
Sometimes - different notation

$$
J=\left(\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right), \quad|J|=\operatorname{det}\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right|
$$

- More Notation -

We write

$$
\begin{aligned}
& J=\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right| \longleftarrow \text { |st row } \nabla g \\
& \nabla g=\left(g_{u}, g_{v}\right)=\left(\frac{\partial g}{\partial u}(u, v), \frac{\partial g}{\partial v}(u, v)\right) \\
& \nabla h=\left(h_{u}, h_{v}\right)=\left(\frac{\partial h}{\partial u}(u, v), \frac{\partial h}{\partial v}(u, v)\right)
\end{aligned}
$$

Recall:

$$
\begin{aligned}
& \frac{\partial g}{\partial u}(u, v)=\lim _{\Delta u \rightarrow 0} \frac{g(u+\Delta u, v)-g(u, v)}{\Delta u} \\
& \nabla g(u, v) \text { points } \quad \text { vl'slope in } \quad \text { direction } u \\
& \text { in direction of } \quad \text { at pt }(u, v)^{\prime \prime}
\end{aligned}
$$

Thus: a coordinate change is given by:

$$
\begin{aligned}
& \text { given by: } \\
& (u, v) \rightarrow(x, y) \quad \begin{array}{l}
x=g(u, v) \\
\\
y=h(u, v)
\end{array} \\
& J=\left|\begin{array}{ll}
g_{u} & g_{v} \\
h_{u} & h_{v}
\end{array}\right|=\left\lvert\, \begin{array}{l}
-\nabla g-1 \leftarrow \text { istrow } \nabla g \\
-\nabla h-\mid \epsilon \text { ind row } \nabla h
\end{array}\right.
\end{aligned}
$$

Another notation:

$$
J=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|_{,} \frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right)
$$

Lee. $x=g(u, v)$
Matrix
of

$$
\frac{\partial x}{\partial u}=g_{u}=\frac{\partial g}{\partial u}(u, v)
$$

Partial Derivatives

Examples
(1) Assume

$$
\begin{aligned}
& x=2 u+3 v \\
& y=-u+v
\end{aligned}
$$

Find I such that $d x d y=J d u d v$
Soln $J=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial u}{\partial v}\end{array}\right)$

$$
=\left|\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right|=2+3=5
$$

$$
d x d y=\sum_{A}^{5} d x d v
$$

So: $\quad \begin{aligned} & \iint f(x, y) d A_{x y}=\iint f(2 u+3 v-u v v) 5 d A_{u v} \\ & R_{x y} \quad R_{u v}\end{aligned}$
(2) Assume:

$$
\begin{aligned}
& x=2 u-v-w \\
& y=u+v \\
& z=u+v+w
\end{aligned}
$$

Find J st $d x d y d z=J d u d v d w$
Soln: $J=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=\left|\begin{array}{ccc}2 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right|$
"To evaluate, expand by any row/colve"
Ind row:

$$
\begin{array}{r}
J=(-1)^{2+1}\left|\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right|+(-1)^{2+2}\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|+(-1)^{2+3} \cdot 0\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right| \\
=(-1)(-1+1)+1(2+1)=3 \\
d x d y d z={ }_{\sim}^{3}=J
\end{array}
$$

(Continued)
(2) Assume:

$$
\begin{aligned}
& x=2 u-v-w \\
& y=u+v \\
& z=u+v+w
\end{aligned}
$$

$$
J=3 \quad 50:
$$

$$
F(u, v, w)=f(2 u-v-w, u+v, u+v+w)
$$

Eg: If if $f=1$ and $D_{x y z}$ is the region sf $D_{\text {uaw }}$ is $0 \leq u \leq 1,0 \leq v \leq 2$,

$$
\iiint_{D_{x y z}} d V_{x y z}=\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} 3 d u d v d w=3 \cdot 3 \cdot 2=18
$$

© Q : why does it work?
Ans: we assume the following fundamental property of Determinants

$$
\begin{aligned}
& \text { The }\left(\mathbb{R}^{2}\right) \operatorname{det}\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\begin{array}{l}
\text { Area of } \\
\text { D-ogram }
\end{array} \\
& \vec{A}=(\overrightarrow{a, c}) \quad \vec{B}=(\overrightarrow{b, d}) \\
& \text { Area }=\operatorname{det}\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \\
& \xrightarrow[x]{\stackrel{\rightharpoonup}{B}} \\
& \text { Pf. } \text { Area }=\|\vec{A}\| \underbrace{\|\vec{B}\| \sin \theta}_{h}=\|\vec{A} \times \vec{B}\| \\
& =\left|\begin{array}{ccc}
i & j & b \\
a & c & \tilde{d} \\
b & d & 0 \\
b & d & 0
\end{array}\right|=\left|\begin{array}{c}
\mid x
\end{array}\right|\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|=|a d-b c|
\end{aligned}
$$

Now consider

$$
\begin{aligned}
& (u, v) \longrightarrow(x, y) \\
& x=a u+b v \\
& y=c u+d v
\end{aligned}
$$

This is a linear transformation:

$$
\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{v}
$$

How does it map unit square

$$
\binom{a}{c}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0} ;\binom{b}{d}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{l}
(1,0) x \\
0 \\
1
\end{array}\right)
$$

$$
\underset{u v-\operatorname{arca}}{(1,0) \times(0,1)} \rightarrow \underset{x y-\operatorname{arca} a}{(\vec{a}, c) \times \vec{b}, d)}
$$

Conclude: The map $(u, v) \rightarrow(x, y)$

the 11-ogram
spanned by
unit square

$$
(\overrightarrow{a, c}) \&(\overrightarrow{b, d)}
$$

$$
(1,0) \times(0,1)
$$

Thus: $\quad d x d y=J d u d v$
In general:

$$
\begin{aligned}
& x=g(u, v) \\
& y=h(u, v)
\end{aligned}
$$

at $(\Delta u, \Delta v)$ is approximated by mapping

$$
\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]}_{J}\left[\begin{array}{c}
\Delta u \\
\Delta v
\end{array}\right] \Rightarrow \begin{gathered}
\text { same } \\
\text { reason } V_{v}
\end{gathered}
$$

Similarly in \mathbb{R}^{3} :

$$
\operatorname{det}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\vec{A} & \vec{B} & \vec{C} \\
1 & 1 & 1
\end{array}\right|=\begin{array}{ll}
\text { Area ot } \\
\text { H-opiped }
\end{array}
$$

So $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left[\begin{array}{ccc}1 & 1 & 1 \\ \vec{A} & \vec{B} & C \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}u \\ v \\ w \\ w\end{array}\right]$ maps

unit 3 -cube in (u, v, w)

spanned by
columns of Matrix

Conclude: $d x d y d z=J_{v} d u d v d w$
In general: $\left[\begin{array}{l}d x \\ d y \\ d z\end{array}\right]=\left[\frac{\partial(x, y, z)}{\partial(u, v, w)}\right]\left[\begin{array}{l}d u \\ d v \\ d w\end{array}\right]$ \Rightarrow Same Result

Orientation: The Jacobian keeps track of the order (u, v)
Defn: If $(u, v) \xrightarrow{\text { map }}(x, y)$ is given by $\begin{aligned} & x=g(u, v) \\ & y=h(u, v)\end{aligned}$ and $J=\left|\frac{\partial(x, v)}{\partial(u, y)}\right| \neq 0$
Then:
$J>0$ orientation preserver
$J<0$ orentafion reversing
Same in \mathbb{R}^{3} :

$$
\begin{aligned}
& x=g(u, v, w) \\
& y=h(u, v, w) \quad J=\left|\frac{\partial(x, v, z)}{\partial(u, v, w)}\right|=\mid \\
& z=k(u, v, w)
\end{aligned}
$$

Application:
\mathbb{R}^{2} : We say a coordinate system (x, y) is positively oriented if "there's 90° beta. pos $x b$ posy" $\stackrel{y \uparrow}{\operatorname{positive}_{x}}$ $x \underset{\longrightarrow}{\text { negative }}$
The: For $(u, v) \rightarrow(x, y), \quad y>0$ iff (u, v) has same orientation as (x, y)

Similarly in \mathbb{R}^{3}
$\mathbb{R}^{3}:(x, y, z)$ is positively oriented if Right Hand Rule holds

$$
\left\{\begin{array}{l}
z \text { y posinve } \\
\frac{3}{3} \rightarrow x \text { oriented }
\end{array}\right.
$$

Thu: If (x, y, z) is positively, oriented then so is (u, v, w) iffy, and only if $J=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|>0$

Example: Assume (x, y) is positively oriented and

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Determine whether (r, θ) or (θ, r) is positively oriented
Soln: We have:

$$
J=\left|\begin{array}{l}
\partial(x, y) \\
\partial(r, \theta)
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial x}{\partial r}, & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=r
$$

Check: $\left|\frac{\partial(x, y)}{\partial(\theta, r)}\right|=\left|\begin{array}{ll}\frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial r} \\ \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial r}\end{array}\right|=-r$
"Determinant changes sign if "you inter change two rows or consul"

Similarly in \mathbb{R}^{3}

$$
\begin{aligned}
& J=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=\left|\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial u}{\partial v} & \frac{\partial u}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| \\
& \text { Conclude: if }
\end{aligned}
$$

Conclude: if $J>0$, then interchange two columns \Rightarrow ching sign

